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Abstract
We consider liquid–liquid phase transitions as an indication of the local structure of condensed
substances and investigate their statistics and thermodynamics. In this area there are two
analytical approaches which describe the transitions: the first is purely phenomenological,
while the second deals with intermolecular couplings. In the present work, we discuss the
features of the above approaches and their applicability to metallic liquids.

1. Introduction

Liquid–liquid phase transitions (LLPTs) have been studied
for a long time. The miscibility–immiscibility phenomena
in binary systems is a well known example (see figure 3).
Recently, structural phase transitions similar to polymorphous
changes in the crystalline state have been found in single-
component liquids under high pressure [1, 2]. The best
known example is phosphorus [3]. While the role of the
local structure in immiscibility phenomena is not always clear,
in single-component systems structure is the only possible
characteristic to distinguish between different phases. A bridge
between the miscibility transitions in solutions and LLPTs in
single-component liquids is provided by the idea that a single-
component liquid may be treated as a mixture of different local
structures [4]. Thus, phenomenological theory similar to the
theory of solutions may be constructed. Analytical results
of the theory give an insight into the structural behaviour of
liquids.

A step beyond pure phenomenology has been performed
based on the idea that intermolecular coupling may serve as
a mechanism for a LLPT [5]. The best known example is
water. In water, intermolecular hydrogen bonding may result
in two possible local structures at intermediate (including
approximately 1000 molecules) length scales—the so-called
‘low density’ (LD) and ‘high density’ (HD) liquids. At this
scale, the water may be considered as a mixture of the above
two liquids [6], and their statistical competition results in LLPT
in undercooled water—see figure 1.

In polymer statistics, analytical methods to account for the
couplings are developed [7].

Both of the models mentioned allow us to proceed
with Hibbs statistics. To do so, two points should be
presented. First, the set of local variables which describes the
configuration of the substance should be established. Second,
the energy of the system (i.e. effective Hamiltonian) should
be written in terms of these variables. Then, the mean
Hibbs statistical values of local variables (mean-field value,
pair correlation functions, etc) serve as an order parameter of
the theory, which allows us to distinguish between different
phases. These points will be addressed while we discuss each
model.

2. Phenomenological model: two local structures

The mathematical background of the model presented was
developed by Patashinski with co-workers [4, 8–10]. In this
section, we mostly follow papers [4, 11].

2.1. Local order and the set of variables

The model considered in this section is based on the local order
concept. The concept implies that in a small volume containing
1–2 coordination shells, the interatomic interaction essentially
restricts the possible relative positions of atoms, so that their
actual configuration is always similar to some ideal pattern. For
close-packed systems, fragments of face-centred cubic (FCC)
and hexagonal close packed (HCP) lattices and icosahedron
may be suggested to be such a pattern, so we can suggest
corresponding types of local order. To distinguish between
different types of local order, we have to introduce numerical
parameters which describe the local structure. The first way
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Figure 1. The LLPT line in undercooled water on the P–T plane
terminates in the critical point. On the elongation of the line a
(dashed) sharp but continuous change of water structure takes place.
This change provides the minima on the melting line.

arises from [12], where the local structure was described
in terms of the angular distribution of particles in the first
coordination shell. A similar but mathematically different way
to introduce local structure parameters was offered in [8]. In
this work, significant estimation was done in the following
way. First, three different 13-atom ideal patterns (fragments
of FCC, HCP lattices and icosahedron) were deformed by
random displacements of atoms. Then, the image recognition
procedure was applied. The probability of wrong recognition
was small up to the values of displacements which correspond
to 1.2–2.0 of the melting temperature (the last was stated by
Lindenam criteria). Thus, different local structures which may
be suggested for close-packed systems are statistically well
distinguished up to these temperatures.

To model the substance where two types of local
order are in competition, the following variables associated
with local clusters may be introduced. To emphasize the
phenomenological character of the model, we marked the types
of local order as ‘hearts’ and ‘crosses’—see figure 2.

If two clusters of equal type are the nearest neighbours,
then the energy of their interaction depends on mutual
orientation: if the orientations coincide within the local
symmetry group element of the ideal pattern, then the
minimum of some depth is achieved. The minimum has
some angular width, which may be modelled by dividing
the space of distinguished orientations of the ideal pattern
into some number of shells, so that if the orientations of the
clusters belong to one and the same shell, then the minimum
of interaction energy is provided; otherwise the energy of
interaction is zero. Each type has its own number of orientation
shells. Thus, the set of possible states of the local cluster may
be labelled by two numbers i, k:

i = 1, 2; i = 1 → k = 1, n; i = 2 → k = 1,m.
(1)

Figure 2. The energy of interaction of two local structures. J1, J2 are
the depths of orientational interaction of the two local structures, and
ε is the interstructural energy.

Number i corresponds to the type of local order, while number
k enumerates the orientations. The first and the second
structures have n and m allowed orientation shells respectively.
The local state variable are presented by matrix σ defined by

σ i
k (r) =

⎧
⎪⎨

⎪⎩

1, if the state of cluster at point

r is labelled by (i, k)

0, otherwise.

(2)

2.2. The Hamiltonian and mean-field approximation

If only two-cluster interactions are accounted for, then the
Hamiltonian takes the form

−H = α
∑

r

n∑

i=1

σ 1
i (r)+

∑

r,r ′
σ i

k (r)M
i j
kl (r − r ′)σ j

l (r
′), (3)

where α is the difference of internal energies of two local
structures. The kernel of interaction differs from zero only for
nearest neighbours. It is supposed to be of the form:

M11
kl = J̃1δkl; M22

kl = J̃2δkl; M12
kl = M21

lk = ε̃.

(4)
Such a form of interaction arises from the following. Let
the two structures differ sharply from each other. If two
clusters with different structures share a boundary, then their
interaction energy is ε̃ despite their orientations. Parameters
J̃1, J̃2 are the depths of orientational interaction of structures 1
and 2 respectively. The orientational interaction of neighbours
having one and the same local structure is described by the
Potts model [13], which demonstrates the first-order phase
transition between orientationally ordered (most of the clusters
are in one and the same orientation, for which we choose
the number 1) and disordered (all orientations are of equal
probabilities) phases. As was shown in [9], the Potts model
provides one of the best descriptions of melting for substances
with a single type of local order.

The following notations will be used below:

ε = ε̃ν; J1 = J̃1ν; J2 = J̃2ν, (5)

were ν is the number of nearest neighbours.
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Figure 3. Left: phase diagram for the Ga–Pb system. Solid lines—experiment [14], dashed lines—calculation. Right: P–T phase diagram of
sulfur. The melting temperature at normal pressure is chosen as unity. Experimental data [2] are marked by dots, solid lines—calculation.
1—low-pressure crystal phase, 3—high pressure crystal phase. These two phases are divided by the polymorphous phase transition line.
2—low pressure liquid phase, 4—high pressure liquid phase. These two phases are divided by the line of the first-order phase transition which
terminates in the critical point (empty circle). This line may be treated as an elongation of the polymorphous phase transition line into the
liquid area.

The Hibbs mean value

wi
k(r) = 〈σ i

k (r)〉 = 1

Z

∑

{σ }
σ i

k (r) exp

[

− H

T

]

Z =
∑

{σ }
exp

[

− H

T

]

,

(6)

serves as an order parameter. In the mean-field approximation,
we assume that, in analogy with the Potts model:

w1
1 = w1; w1

k �=1 = p −w1

n − 1

w2
1 = w2; w2

k �=1 = 1 − p −w2

m − 1
.

(7)

Here, p is the mean probability of the first structure.
Relations (7) realize the idea of orientational ordering; the
number 1 is assigned to the orientation which is most probable
in the crystalline state. Now we are able to introduce the
following classification of possible phases in the model:

(i) w1 ∼ p, p ∼ 1—crystal with the first type of local
structure;

(ii) w1 = p/n, p ∼ 1—liquid with the first type of local
structure;

(iii) w2 ∼ 1− p, p ∼ 0—crystal with the second type of local
structure;

(iv) w2 = (1 − p)/m, p ∼ 0—liquid with second type of
local structure;

For the thermodynamic potential per one cluster, we get

f = −J2(1 − p)2
(

w̃2 − w̃2
2

2
− (1 − w̃2)

2

2(m − 1)

)

− J1 p2

(

w̃1 − w̃2
1

2
− (1 − w̃1)

2

2(n − 1)

)

− εp(1 − p)+ T (1 − p) ln(1 − p)+ T p ln p

+ T p ln w̃1 + T (1 − p) ln w̃2 + pα, (8)

where the values w̃1 = w1/p, w̃2 = w2/(1 − p) obey
equations

w̃1 =
[

1 + (n − 1) exp

(
J1 p(1 − nw̃1)

T (n − 1)

)]−1

, (9)

w̃2 =
[

1 + (m − 1) exp

(
J2(1 − p)(1 − mw̃2)

T (m − 1)

)]−1

(10)

with the help of (8), the phase diagram of the model can be
plotted for two physically different cases.

The first case is a binary system in which the second
type of local order occurs due to the presence of the second
component, i.e. the binary system with limited miscibility of
the components. The two types of local order correspond to the
pure substances A and B . The model can be applied to systems
in which the two types of local order differ sharply (have
different groups of local symmetry or incompatible interatomic
distances). In detail, the calculations are performed in [4],
where it was shown that all types of phase diagrams for binary
systems with limited miscibility of the components (eutectic
and monotectic) are described correctly. To demonstrate the
validity of the model, the results for the Ga–Pb system are
plotted on the left of figure 3. Determination of the model
parameters was made in the following way. The parameters are
J1, n, J2,m, α, ε. Parameters J1, n and J2,m correspond to
pure components and were determined from the heat capacity
temperature dependencies of pure Ga and Pb [15]. For
the binary system, where the concentration of the second
component is an external parameter, the value of α does
not play any role: it should be chosen to provide a fixed
concentration of mixture. The only parameter to fit the known
diagram is ε. Thus, agreement with the experiment is quite
good.

The parameters are J1 = 3.18, m = 11 (Pb), J2 =
1.6, n = 11 (bf Ga), ε = −1.596. Temperature unity
corresponds to the Ga melting point.

3
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Figure 4. The new types of binary phase diagrams with peritectic and monotectic equilibriums. Cα1 ,Cα2 —polymorphous crystal
modifications of the solvent, Lα1 , Lα2 —corresponding liquids with different local structures. Above the gap, immiscibility vanishes and only
one liquid phase Lα exists.

The second case corresponds to the single-component
system where the second type of local order may arise due
to another possible spacing of atoms. In such a system, an
additional external parameter (pressure) may be significant
for the competition of local structures. By suggesting linear
pressure dependency for the J1, J2, α, we are able to fit the
known experimental P–T diagrams for selenium, sulfur, and
carbon. Also, linear temperature dependences were suggested
for α. The parameters n,m are determined by the local
structure symmetry, so we did not assume any temperature or
pressure dependence for them. The same may be thought about
the ε due to small variations in atomic distances at the pressures
considered. As an example, the P–T phase diagram of sulfur
is presented on the right of figure 3.

It should be stressed that the diagrams in figure 3 are
the diagrams of one and the same model, plotted in different
variables. Thus, a bridge between the miscibility transition in
solutions and LLPTs in single-component liquids is provided
by the model. Note, that the LLPT line is described as
the continuation of the corresponding polymorphous phase
transition line into the liquid area, where it terminates in the
critical point. In this point, the transition is of second order.
Above this point, there is no phase transition—the change of
local order is continuous, only a kink in the order parameters
of temperature or pressure dependency is presented.

Another exciting prediction of the model [16] concerns the
situation where polymorphous phase transition takes place in
some pure substance just below the melting point. Then we

consider the impurity which lowers the melting temperature
and raises the temperature of polymorphous transition—so that
the corresponding two-phase domains are going to intersect.
Thus, we can use the impurity concentration as an external
thermodynamic parameter instead of pressure. In this case, the
model predicts new types of binary phase diagrams. The most
probable of them are presented in figure 4. The full analysis
is given in [16]. Note, that the immiscibility in figure 4 takes
place between liquids based on one and the same component,
in contrast with the left of figure 3, where it occurs between
liquids based on different components.

2.3. Iron-based systems

The first model may be applied to metallic systems without
any limitations due to its phenomenological character. For
example, there were no specific features while calculating the
binary Ga–Pb diagram mentioned above. Also, the model may
be applied to calculation of the P–T diagrams of pure metals:
for example, such a diagram of Sn probably demonstrates the
LLPTs.

The most interesting application concerns iron and iron-
based systems. The problem is that in iron, polymorphous
phase transition takes place (γ –δ transition, 1496 ◦C) just
below the melting point (1536 ◦C). That means that Fe-based
systems are possible candidates where the phase diagrams
presented in figure 4 may be realized. For liquid iron-based
systems the experimental situation is as follows. It is well

4
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Figure 5. Left: black dots correspond to positions of the kinks on the magnetic susceptibility temperature curve on the Fe–C phase diagram.
We suggest that the phase diagram is close to the type of phase diagrams from figure 4, given on the right. The difference is that the
immiscibility gap lies in the area of metastable liquid, so its position is marked by a dashed cupola. On the elongation of the middle line of the
cupola (dashed line), a rapid but smooth change of local structure takes place.

Figure 6. Black dots on the left correspond to positions of the kinks on the magnetic susceptibility temperature curve on the Fe–Ni phase
diagram [18]. We suggest that the phase diagram is close to the type of phase diagrams from figure 4, given on the right. The difference is that
the immiscibility gap lies in the area of metastable liquid, so its position is marked by a dashed cupola. On the elongation of the middle line of
the cupola (dotted line), a rapid but smooth change of local structure takes place.

known [17] that the structure of liquid Fe changes from δ-
like to γ -like near 1650 ◦C. This change is not a phase
transition: in that case, phase separation in all binary Fe-
based liquid alloys should take place. On the contrary, this
structure anomaly has been fixed as a rapid but smooth change
of physical properties (viscosity, density, structure factor,
magnetic susceptibility) versus temperature (i.e. as a kink in the
temperature dependence). Probably the magnetic susceptibility
is most sensitive to this local structure change. At the left
of figures 5 and 6 the positions of the kink on the magnetic
susceptibility temperature dependences are indicated on the
phase diagrams of binary Fe–C and Fe–Ni systems.

Note, that such a kink should be observed on the
elongation of the midline of the immiscibility gap [16]. We

suggest that in the systems presented, the gap lies somewhere
below the liquidus line in the undercooled liquid, so that
situations are close to the phase diagrams presented in the
right-hand parts of figures 5 and 6. This suggestion provides
some challenge to the experiment: the immiscibility in these
systems may reach equilibrium under pressure, since the
pressure applied raises the γ –δ transition temperature so that
it is greater than the melting temperature.

Note, that the change of local order in a narrow
temperature region is suggested for the pure iron. Thus, the
lines of this change should be observed in all Fe-based binary
systems, so that their description in the frames of the model
presented is our next task for future investigations.

5



J. Phys.: Condens. Matter 20 (2008) 114108 L Son and G Rusakov

3. Intermolecular couplings

The idea that intermolecular coupling may serve as a
mechanism for LLPTs was presented in [5]. The idea of
modelling of chemically aggregated systems in terms of the
scalar order parameter has a long history. Probably Lifshitz
was the first to offer this approach [19]. Further development of
the mathematical formalism is presented in [7]. In this section,
we mostly follow the paper [20].

3.1. The set of variables and the Hamiltonian

A statistical description of condensed substances with the
possibility of association and aggregation of molecules has
been intensively developed for a long time. The theory of
associated solutions [21] and the Flory theory of polymer
solutions [22] are the milestones on this journey. Here, we
consider the model which is somewhat intermediate between
these two theories.

Quasi-chemical bonding between molecules may be
characterized by two main features. First, the bond is
short-range and directed (i.e. may be drawn as the vector
connecting two neighbouring molecules). Second, the bonding
is saturated, i.e. no more than some characteristic number
of bonds N may be permitted per one molecule. The same
features may be suggested for the bonds in polymers, so the
statistical description of polymer solutions may be applied to
the molecular liquids with bonding. The difference is that, in
the theory of polymers, one supposes the polymer chain to be
very long, while in our case, the chain of bonded molecules
may have an arbitrary length.

Consider a spatial net of sites which approximately
correspond to the spacing of molecules in the liquid.
Neighbouring sites are connected with each other by edges.
We denote the number of nearest neighbours by γ . Let us
numerate the sites by greek indices and the edges by roman
ones. Each site α is characterized by variable nα , which is the
filling number

nα =
{

1, if the site α is occupied by the molecule

0, if the site α is empty.
(11)

Also, the real scalar variable ψi corresponds to the edge
numbered by i . Let us consider the partition

Z =
∑

{n}

∫

Dψ exp[−F{n, ψ}], (12)

where the summation and integration goes over all possible
configurations {n, ψ} of variables nα, ψi . The ‘effective
Hamiltonian’ F{n, ψ} is defined by

F{n, ψ} = −1

2

∑

α,β

nα Jαβnβ − μ

T

∑

α

nα

+ 1
2

∑

i

Kψ2
i −

∑

α

ln[1 + nαRα(ψ)], (13)

Rα(ψ) = a1

∑

i1
α

ψi1
α
+ a2

∑

i1
α �=i2

α

ψi1
α
ψi2

α

+ · · · + aN

∑

i p
α �=iq

α

ψi1
α
ψi2

α
· · ·ψi N

α
. (14)

Here, indices i 1
α, i

2
α, . . . , i

p
α , enumerate the edges which are

connected with the site α. Spatial matrix Jαβ is

Jαβ =
{

J/T, if α, β are the nearest neighbors

0, otherwise,
(15)

where J is the energy of attractive non-directed (Van der
Waals) interaction between molecules and μ is their chemical
potential. Thus, the first and the second terms in (13)
correspond to the lattice–gas model [23] and allow us to
describe the density of the system. The value K is

K = exp(U/T ), (16)

where U is the energy of the quasi-chemical bond. In ((15)
and (16)), T = kBTk , where Tk, kB are the temperature and the
Boltzmann constant respectively. The last two terms in (13)
allow us to describe bonding. To demonstrate this fact, let us
rewrite (12)

Z =
∑

{n}
e−F{n}

∫

Dψ exp

[

− 1
2

∑

i

Kψ2
i

]

×
∏

α

(1 + nαRα(ψ)),

F{n} = −1

2

∑

αβ

nα Jαβnβ − μ

T

∑

α

nα,

(17)

and consider the functional integral over {ψ} at some given
configuration of filling numbers {n}. Releasing the brackets in
the product, we get the sum over all possible series of products:
∏

α

(1 + nαRα(ψ)) = 1 + n1a1ψ11 + n1a1ψ21

+ · · · n1n2a2
1ψ11ψ21 + · · · . (18)

Then, the integration with the Gaussian weight exp[− 1
2 K

∑

ψ2
i ] produces all possible couplings between pairs of neigh-

bouring sites. The coupling takes place when the mathematical
power of ψ on the corresponding edge is two. Zero power
corresponds to the edge without coupling. The ratio of the
weight of the coupled edge to the weight of the uncoupled one
is K −1 = exp(−U/T ). Thus, the partition (18) generates the
sum over all possible configurations of the occupied sites, con-
nected by all possible couplings between nearest neighbours,
which correspond to intermolecular bonds. Each site with k
bonds along its edges has an additional weight ak . No more
than one bond per edge, and no more than N bonds per site are
permitted due to the structure of polynomial Rα(ψ), see (14).

Besides, each configuration of filling numbers {n} has the
standard weight of the lattice–gas theory,

exp

[
1

2

∑

αβ

nα Jαβnβ − μ

T

∑

α

nα

]

. (19)

Thus, in the frames of the formalism considered, we can
easily model an arbitrary molecular liquid by an appropriate
choice of model parameters. These are: U—the energy of
the quasi-chemical bond, N—the maximal number of bonds
per molecule, J—the energy of non-directed (Van der Waals)

6
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interaction, μ—the chemical potential of molecules, am—the
weight of molecule with m bonds.

Instead of filling numbers, it is more useful to deal with
scalar variables without any limitations imposed. To do so, the
Hubbard–Stratonovich transformation to the conjugated field
may be used [23]. Then, summation over filling numbers leads
to the functional integral over the conjugated scalar field ϕ:

Z =
∫

DψDϕ exp[−F{ϕ,ψ}]

F{ϕ,ψ} = 1
2 K

∑

i

ψ2
i + 1

2

∑

αβ

ϕα J −1
αβ ϕβ

−
∑

α

ln[1 + eϕα+
μ

T (1 + Rα(ψ))].

(20)

To analyse the functional integral (20), we can apply the
traditional method: to find the most probable configuration
which minimizes the F{ϕ,ψ}, then to investigate fluctuations
around it, etc. In the next section, we describe the first step,
which is the mean-field approximation.

3.2. Mean-field analysis

The mean-field values 〈ϕα〉, 〈ψi 〉 serve as order parameters and
provide the minima of (20) and obey the following equations:

∂F

∂ψi

∣
∣
∣
∣〈ϕα〉,〈ψi 〉

= 0,
∂F

∂ϕα

∣
∣
∣
∣〈ϕα〉,〈ψi 〉

= 0. (21)

Instead of ϕα, it is better to use the variable

qα =
∑

β

J −1
αβ ϕβ,

because its mean-field value,

wα = 〈qα〉, (22)

coincides with the mean value of the filling number 〈nα〉
and should be understood as the mean concentration of the
molecules.

For a homogeneous system, 〈ψi 〉 = �,wα = w,
equations (21) may be written in explicit form

w = exp[ Jγ
T w + μ

T + ln(1 + R(�))]
1 + exp[ Jγ

T w + μ

T + ln(1 + R(�))] (23)

� = ns

ne
e− U

T w
R′(�)

1 + R(�)
(24)

R(�) = a1γ� + a2
γ (γ − 1)

2
�2 + · · · + aN C N

γ �
N (25)

where ns/ne is the ratio of the number of sites to the number of
edges in the lattice and γ is the number of nearest neighbours.
Solutions of system (23)–(25) determine the equilibrium values
of �,w. For non-equilibrium �,w, expression (20) gives the
density of the thermodynamic potential in the Landau theory:

f (�,w) = ne

2ns
e

U
T �2 + Jγ

2T
w2 − ln[1 + e

Jγ
T w+ μ

T (1 + R(�))].
(26)

Solutions of system (23)–(25) correspond to different phases
of the system. The stable phases correspond to minima of (26).

The first of equations (23) is exactly the equation which
arises in the lattice–gas theory of critical point:

ln
w

1 −w
= Jγ

T
w+ B, B = μ

T
+ ln(1+ R(�)). (27)

Depending on parameters T, B , this equation may have from
one to three solutions on the interval (0, 1). The solution with
w 	 1 corresponds to the condensed phase (liquid), while
the solution w 	 0 represents the gas. We are interested in
the condensed phase behaviour, far from the liquid–gas critical
point. Thus, we consider the case when equation (27) has only
one solution, w 	 1. This may always be provided by an
appropriate choice of parameter μ in (27). If equation (27) has
only one solution, then one gets the Landau theory with single
order parameter � and with thermodynamic potential

f (�) = 1

2b
�2 + a

2
w2(�)− ln[1 + eaw(�)+ μ

T (1 + R(�))],
(28)

where w(�) is given by (27), b = ns
ne

e− U
T , a = Jγ

T . Function
f (�)may have several minima, which correspond to different
arrangements of bonds. These minima are determined by
equation (24):

� = bw(�)
R′(�)

1 + R(�)
. (29)

The formalism considered allows us to describe a wide
variety of intermolecular bonding in a liquid. The bonding
has been modelled by the choice of the polynomial under the
logarithm in (26):

R(�) = a1γ� + a2
γ (γ − 1)

2
�2 + · · · + aN C N

γ �
N . (30)

The number N is the maximal number of bonds per molecule,
and the coefficient am is the weight of the m-bonded molecule.
Note, that P(�) is positive for most physical cases. Since the
coupling arises due to the charge redistribution in the molecule,
the maximal number of bonds is even. An odd number of
bonds means that the charge distribution in the molecule is not
symmetric, so

a2n � a2n−1.

It can be easily shown, that this provides positive values of
R(�) at any � .

At low temperatures, w(�) 	 1, and (29) may be
rewritten as

B� = R′(�)
1 + R(�)

, B ∼ exp

[
U

T

]

. (31)

The absolute value of � is proportional to the mean length of
quasi-polymers [7]. When the maximal number of bonds per
molecule N � 4, a non-trivial set of solutions of equation (29)
arises. Mathematically, these solutions arise due to kinks in
the right-hand side of (29), provided by high powers in the
polynomial R(�). As an example, the graphic solution of

7
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Figure 7. The graphic solution of equation (29), i.e. left and right sides of this equation, and the corresponding plot of thermodynamic
potential (28) at T̃ = T/U = 1.019 (left—graphic solution, right—thermodynamic potential). The calculations are done in reduced variables:
ne/ns = λ = 3, γ = 6, a1 = · · · = a4 = a = 0.015, J̃ = J/U = 0.2, μ̃ = μ/U = 1. Parameter N = 4 in both cases.

Figure 8. The μ̃–T̃ phase diagrams at J̃ = 0.7 (a) and J̃ = 0.3, (b). Other parameters are ne/ns = λ = 3, γ = 6, a1 = · · · = a4 =
a = 0.015, N = 4. Liquid–liquid and liquid–gas critical points are denoted as C1 and C2, respectively.

equation (29) at some certain model parameters is presented in
figure 7, together with the corresponding F(�) dependence.

As can be easily understood, the existence of such
solutions may result in the liquid–liquid phase transition. The
transition is the first-order phase transition, the line of which
terminates in the critical point at the μ–T plane. At this line,
the order parameter jumps from �1 to �2. In the critical
point, the jump vanishes. Since the absolute value of � is
proportional to the mean length of quasi-polymers, then higher
� corresponds to a higher number of active bonds. The density
difference is small, but higher � also corresponds to higher
density. The model predicts possible phase diagrams in the
μ–T plane, which are presented at figure 8.

Phase diagrams of that type were suggested in [24, 25]
on the basis of computer simulations. Note, that the right-
hand diagram in figure 8 demonstrates an interesting possibility
for the system behaviour: there is no first-order transition in
density parameter w, and � is the relevant order parameter for
the liquid–gas critical point.

3.3. Metallic glass formers

The application of the second model to liquid metallic systems
requires a detailed physical background since the model
is valid only if relatively stable quasi-molecules with the
possibility of further quasi-chemical aggregation exist in the
liquid.

Among metallic liquids, binary glass formers demonstrate
the possibility of stable quasi-molecule Me2A formation. Here,
Me is the basic metal and A is the addition. For example,
quasi-molecules were discovered in Ni–P [26], Fe–B [27],
Al–REM [28], Ca–Pb and Ca–Sn [29], and Pd–Si [30] liquid
alloys.

Since the model allows us to calculate the contribution of
the quasi-molecules to the thermodynamic potential, then all
corresponding characteristics may be calculated also, including
the activities of the components. In figure 9, such a calculation
is presented for the Pd–Si system [31], in comparison with
experimental data. It can be seen that the latter may be
fitted by an appropriate choice of model parameters. At
the same time, the temperature dependence of the order
parameter � may be calculated. This dependency does not
demonstrate a discontinuous phase transition, only a sharp
kink at 1210 ◦C takes place. A corresponding kink has been
observed in the viscosity temperature dependence, so one
can relate this anomaly to the sharp change of the mean
quasi-polymer length. Similar results were obtained for the
Ni–P and Al–Ce systems [31]. Thus, the model allows us
to explain the anomalies in the temperature dependence of
the physical properties, which have often been observed for
metallic glass formers from their associated thermodynamic
features.

8
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Figure 9. Left: activity of Pd in the Pd–Si system. Experimental results are presented by points, the solid curve corresponds to the model
calculations, the straight line represents the Raul law. ×—calorimetric measurements, ♦—effusion experiment, 0—torsion method.
Right: temperature dependence of order parameter (calculated, in the inset) and viscosity (measured) for Pd82Si18 liquid alloy. The
temperature of the anomaly is marked by a vertical line.

4. Conclusion

The analytical results presented are obtained in the frames
of the rough models. Nevertheless, these results provide
an insight into the microscopical liquid behaviour. The
models give a good qualitative agreement with known physical
situations (immiscibility, anomalies in metallic glass formers)
and predict some novel phenomena (new types of binary
diagrams, two critical points in fluids). The main conclusion
may be formulated as follows. The local structure of a fluid
occurs as a thermodynamic characteristic and a fluctuating
variable. Phase transitions (LLPTs) may be associated with
discontinuous changes in the local structure. For more
detailed investigations of LLPTs one needs more experimental
information and inclusion of ab initio calculations instead of
phenomenology in the modelling. We believe that these points
may be provided in the near future.
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